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Phase separation kinetics of liquid crystalline polymers: Effect of orientational order
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Phase separation kinetics of main-chain liquid crystalline polyrfiet®’s) is investigated by numerically
solving time-dependent Ginzburg-Landau equations for the compositional order par@nasterthe orienta-
tional order paramete®; . The kinetic coefficients are evaluated by using the biased reptation model with a
microscopic model of wormlike chains. In numerical simulations we find the formation of a percolated network
structure rich in LCP’s that resembles that observed in experiments. In our kinetic equations the coupling
between compositional order and orientational order appea® the presence of the off-diagonal kinetic
coefficientA ,5 and(ii) the dependence of the kinetic coefficients®n(LCP’s tend to diffuse parallel to the
nematic orientation We show by a linear analysis of the growing modes that the presentgsduppresses
the growth of the compositional order in the early stage. We also show that the tendency of LCP’s to diffuse
parallel to the nematic orientation is responsible for the breakage of the network structure.
[S1063-651%99)14303-4

PACS numbses): 61.25.Hg, 64.70.Md, 64.7%9

I. INTRODUCTION is significantly different from that of simple liquids. Main-
chain LCP’s have mesogenic units in their backbones and

The kinetics of phase separation has been an importarshow nematic order in suitable conditions. From statistical
and challenging problem in statistical phys[d§ and poly- mechanical point of view, phase separation of LCP’s is a
meric systems have attracted great theoretical and technéascinating but difficult subject because of the coupling be-
logical interest. Experimental studies of phase separation kiween the compositional order and the orientational order.
netics in polymeric systems have thus been extensivelfPhase diagram of systems containing LCP’s is quite complex
performed[2] and it has been shown that binary homopoly-and sensitively depends on the properties of the system such
mer blends belong to the universality class of simple fluids inas isotropic and anisotropic interaction paramef&g3. Ex-
many cases, although the temporal and spatial scales aperiments have been performed concerning the phase sepa-
much more enlarged than in simple fluids. However, phaseation kinetics and morphology of LCP’s. For example,
separation in polymeric systems can be significantly differenphase separation of LCP solutions lead to fibrillar network
in dynamical as well as static aspects from that in simpledomains rich in LCP’s even when the volume fraction of
fluids because polymer chains have internal degrees of fre¢-CP’s is relatively smal[13]. Mixtures of LCP’s and low-
dom due to the chain connectivity and are spatially extendedholecular-weight liquid crystals in a nematic state exhibit a
because of their large molecular sigZ&-5]. For example, nematic-nematic phase separation to form anisotropic drop-
block copolymers, composed of different types of homopoly-lets[14] or striated patterns parallel to the nematic direction
mer chains covalently connected to one another, show m{15], which clearly indicates that orientational order has a
crophase separation to form rich variety of periodic struc-significant effect on compositional phase separation. LCP’s
tures such as lamellae, cylinders, and spheres depending afso have an experimental advantage that we can pursue a
the temperature and the composition of a single chain. Maceal space analysis on mechanism of phase separation be-
rophase separation does not occur in block copolymer meltsause the isotropic phase poor in LCP’s and the anisotropic
because the characteristic size of phase-separated domapisase rich in LCP’s give a remarkable contrast by polarized
cannot exceed the length of a single polymer chain. Recenight microscopy{16,17]. Observation of a process of phase
studies on kinetics of block copolymer melf6,7] have separation in 50:50 mixtures of LCP’s and flexible polymers
shown that changes in the chain conformation at the intershows that percolated network structures rich in LCP’s are
faces between phase-separated domains have an importamtially formed and that they break up and shrink to droplets
effect on the phase transition kinetics. It has also been showi6,17.
that the dynamical aspect of phase separation in polymer The aim of this article is to investigate phase separation
solutions is significantly different from that of simple liquids. kinetics of LCP’s. As noted in the preceding paragraph, ori-
By quenching semidilute polymer solutions into an unstableentational order as well as compositional order must be
temperature region, a transient network structure rich inraced to describe the process of phase separation and the
polymers has been observgd]. This unusual behavior is coupling of these two order parameters makes the problem
attributed to the large difference in viscoelastic propertiesjuite complicated. Hence there have not been enough theo-
between polymers and solverj&-11]. retical studies focused on the dynamical aspect of the phase

Liquid crystalline polymergLCP’s), which have attracted separation in LCP’s, and it still remains unclear how orien-
much technological attention because of their industrial aptational order affects the phase separation kinetics of LCP’s
plications such as optical devices and fibers of high tensilén late stages. Some previous attempts were based on purely
strength, are another good example whose phase separatiphenomenological arguments and by using the time depen-

1063-651X/99/568)/327514)/$15.00 PRE 59 3275 ©1999 The American Physical Society



3276 JUN-ICHI FUKUDA PRE 59

dent Ginzburg-LandadTDGL) equations for the order pa- . vo

rameters, linear analysis of the growing mddé&], and nu- P(7,r)= 35(“ R*(7)). ()
merical analysis of the time evolution of domain morphology

[19] were given. There also exist some other studies on &jere y, and b are the monomer volume and the average
microscopic basis. They are based on the Doi equa0h  distance between adjacent monomers, respectively, and
the equation for time evolution of the positional and orienta-| = Np, N being the degree of polymerization. Thes the
tional distribution function for I‘Igld rods. Shimada, DOi, and chain index and the Conﬁguration of tlaeth chain is repre-
Okano [21] derived the linearized equations describing thesented b}Ra(T), wherer parametrizes the position along the

growth of the order parameters by projecting the Doi equachain running from 0 toL. The other is the orientational
tion to the equations for the compositional and the orientagrder, which is defined by

tional order parameters. Liu and Fredrick$@@] derived the

TDGL equations and the kinetic coefficients were derived by Lo,

using the Doi equation and a dynamical random phase ap- S”-(r)zé J'o d7Sj(7.r) &)
proximation. In this work we will consider the TDGL equa-
tions of motion for the compositional scalar order parameteiyith
¢ and the orientational order parameter of second-rank ten-
sor §;, and derive the kinetic coefficients on a different
basis, the biased reptation modél. Characteristic of our
model are the presence of the off-diagonal kinetic coefficient

A 45 and the introduction of anisotropic diffusion induced by where

orientational order. Liu and Fredricksq@2] have already N

shown that the off-diagonal kinetic coefficient should appear ue(r)= IR{(7) ®)

in the kinetic equations. However, phenomenological analy- : T

ses[18,19 have neglected this off-diagonal kinetic coeffi- i o _ i
cient and our numerical studi¢23,24 have shown that it andd is the spatial dimension of the system. From the defi-
has a significant effect on phase separation kinetics. Anisdlition S;j is symmetric ands;=0 in the equilibrium isotro-
tropic diffusion naturally arises in a nematic state becaus®IC State.

LCP’s tend to make Brownian motion parallel to themselves

rather than perpendicular to themselves in nondilute solu- B. Single-chain Hamiltonian

tions [20]. However, so far as we know, there has been no |, the calculation of the free enerdg5] and the kinetic

attempt, even phenomenologically, to incorporate this kind;gefficients given below, a microscopic model for a single
of anisotropy to kinetic coefficients to reproduce anisotropiCopain is necessary. A main-chain LCP is stiff due to the

diffusion. _ mesogenic units along the chain and the bending energy of a
This article is organized as follows: In Sec. Il, we formu- -hain can be described as

late our model. We define the compositional and the orien-
tational order parameters in Sec. Il A. In Sec. Il B, we give L eb/ou(r)
the Hamiltonian of a single chain that will be used through- IBHbend:f T

. : o 2\ 97
out the calculations given below. In Sec. Il C, we show the

free energy functional of the system in terms of the ordefyhere g and e are the inverse temperature and thiénen-

parameters defined in Sec. Il A. Derivation of the kineticgjonless bending elastic constant, respectively, anis de-

equations is given_in Sec..ll D. In Sec. Ill, we give the resultSfined in Eq. (5). Equation(6) with the constraint of local

of the numencal integration of our model. In Sec. IV, We jnextensibility |u(7)| =1 is a typical model of a wormlike

perform a linear analysis of the growing modes from an iso¢nain and the properties of this model have been extensively

tropic and homogeneous state. we give a brief conclusion iBtudied[26—29.

Sec. V. Another model has also been studied for a wormlike chain
where local inextensibility of the chain is not impode&t8—

Il. MODEL 31]. Then for the model to be well defined, a penalty for the
stretching of the chain must be added to the Hamiltonian and
the resulting energy for a single chain can be written as

au(r)\?
or ) }’ )

Uo

§i(rnn=1

1
HEMEE aa,}a(r “RY(7), (@

2

: (6

A. Order parameters

We consider a solution of main-chain liquid crystalline
homopolymers. As noted in the Introduction, the orienta- "y _de a 2+§
tional order as well as the compositional order the density BHo= 0 T 2Ibu(T) 2
of the polymergmust be specified to describe the state of the
system. To this end we introduce the following two orderwhere the first term penalizes the stretching of the chain and
parameters. One is the volume fraction of the polymers deanother elastic constartis introduced. Here we impose

fined as the  constraint  E(u(7)?)o=JDRu(7)%exp(—BH,y)/
. JDRexp(—BH,) instead of the constraint of local inexten-
drn=> f dr (7.1 1) sibility |u(7)|=1. Then we obtaif25,31]
@ 0
=2 8
with T d ®
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and the properties of a single chain can be described by a -
single bending elastic constaat z_ofhy ,hgj}=ZJ’ DR(7)exp — BHior)
In our calculation of the free ener¢25], Eq.(7) has been
adopted as a single chain Hamiltonian instead of(Bwith = Z(exp(— BH1))o- (14

the constraint of local inextensibility because the Gaussian _
property of the Hamiltoniaii7) greatly facilitates the calcu- Here Z is the contribution from the kinetic energy arf
lation of the free-energy functional. Therefore we also adopt= EIDR( T)exp(—BH,). The average ir{14) is taken over
Eq. (7) for the calculation of the kinetic coefficients given the unperturbed Hamiltonian and defined by
below. We note that since the model given by Ej.allows
the fluctuation oflu(7)|, the orientational order parameter _
S;j is not necessarily traceless, although it is traceless in thé '>°_f DR(7)-- -exp(—,BHo)/f DR(7)exp(~ BHo).
usual liquid crystal§32]. We also note that Gupta and Ed- (15
wards[34] have extensively studied the phase behavior of
LCP’s using the Hamiltoniai7).

Finally, for the sake of convenience in the discussion be
low, we introduce the fieldé ,(r) and hsij(r) conjugate to

the order parameterg(r) and S;(r), respectively. The
Hamiltonian due to these conjugate fields can be written a

Monomer interaction is taken into account by the random
phase approximatiofRPA). In the RPA, response of poly-
mers to the field$, and hS.,- is considered to be the same as

that of noninteracting polymers, that is, the relation between
Sthe order parameter$ and S;; and the conjugate fields,,

and hsij for interacting chains is also given by Eq&2) and
(13). However, the fieldsh, and hS”- themselves are cor-
rected to take into account monomer interactions as

L - A
pra= [ dr [ drtnyn e +hs (03 (m0), @)

whereg(,r) andS;;(7,r) have been defined in Eq&) and hs(r)=h5(n+hi'(r), (16)
(4). Hereafter summations over repeated indices are implied. 0 it
The total Hamiltonian for a single chain is hs, (N=hs (r)+hg (1), 17
BHiot= B(Ho+ Hy). (100 whereh{ and h%”. are the fields that noninteracting polymers
feel and their explicit form, which will be discussed below,
C. Free energy can be obtained by inverting Eq&l2) and (13). The addi-

In this subsection, we briefly review the calculation of thetiona! fieldsh," a”dhg:jt represent monomer interaction. The
free-energy functional in terms of the order paramegieasid  isotropic interaction that favors demixing is iﬂ{,‘t and the
Sij [25]. There have been numerous studies concerning thanisotropic interaction that induces nematic ordering and the
phase diagram of systems containing LCP’s and Liu angbenalty for the fluctuation of segment length can be incorpo-
Fredrickson derived the free-energy functional for semiflexsated in hg:_t. The explicit form ofh}* and hg:_‘ are given
ible polymer blends as a Landau-de Gennes expansion ijhen we dJiscuss the final form of the free-enérgy functional.

terms of the orientational tensorial (_)rder _parz_am_@iﬁeﬂ. Our The calculation oih% andh? requires the evaluation of
calculation of the free-energy functional is similar to that of i

Liu and Fredrickson except that our calculation uses thé-o. However, we cannot calcula® , analytically and we
single-chain Hamiltoniar7) while that of Liu and Fredrick- Make a perturbation expansion in termsh@lg and a gradient
son is based on the microscopic model of an inextensiblexpansion. Fortunately in zeroth order in the gradients and
wormlike chain(6). In the mean field approximation, the for the rigid rod limit (e—«), we can evaluate

form of the free-energy functional [25] z_, exactly and inversion of Eq$12) and(13) yields
= ! Nh%=—I i $Trin(1+d
BFS.Sik=— | dr| S5 A +hy(D (1) voNy=—In| =07 | =3 Trin(1+dQ)
—3(1+dQ); 1dQ;;, 18
+hsij(r)3j(r))- (ll) 2( Q)|] Q]I ( )
PN 10 1 h¢ )= (1+dQ);1d 19
The relation between order parameters and conjugate fields B T( S.j+ Sji)_( +dQ)ik dQyj, (19

for noninteracting ideal chains is given by

524(hy e ) where
Zo{hy . hs
B(r)=— — (12 S;(1)
Shy(r) Qij(nN= ) (20
520{h¢,,h5”}

(13) is the orientational order per segmehis adXxd unit matrix
and (1+dQ)i]1 is the element of the inverse matrix of
1+dQ. Tr implies taking the trace of a matrix.

where z_ofhy,hs } is the partition function of a single |y Ref.[25], the gradient expansion up to second order is

chain, taken in evaluatingz_, and only the terms up to second

Sij(r):—Tj(r).
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order inQ;; are retained for the second-order terms in thethe Doi equatior{20], the equation of motion for the posi-
gradients. Taking into account the interaction terms and théonal and orientational distribution function of rigid rods.
degrees of freedom of the solvents, we obtain the final fornOur derivation of the equations of motion is on a different

of the free energy as basis, the biased reptation modié]. In the biased reptation
model, polymer chains make the Brownian motion under the

1 P —¢ fields they feel (i, and hS|j in our case A crucial assump-
F:m drygIn e+ N In(1—¢)+x¢(1—¢) tion of this model is that polymer chains can move only

along themselves because of the topological constraints im-
& 1, ) posed by the surrounding chains. That is, only the transla-
- mTr{In(1+ dQ)—dQ}— W@ Tr(Q—(1/d)TrQ) tional diffusion parallel to the chains is allowed and we ne-
glect the rotational diffusion and the translational diffusion
L , 1 5 perpendicular to the chain, which are suppressed in nondilute
+3Wep(TrQ)=+ gco(t% ®) solutions due to the entanglemdB0]. We also neglect the
hydrodynamic effect, though it might play an important role
. ) in late stage phase separation.
+32L14(3Qjj) Here we briefly review the argument of the biased repta-
tion model by Kawasaki and Sekimof6] and show how
A their argument can be extended to our case. The reptation
+3L2[3(#3Qij A Qxj+ dQijdiQji) 1 | - (21)  motion of a single chain along itself can be represented by a
single parametex(t), which has the same unit as the param-

o ) . . eter 7 characterizing the position of the segment along the
The first line is the conventional Flory-Huggins energy with .pain. The Langevin equation farcan be given by
an isotropic interaction parametgrand N'=1. When we
consider the blends of LCP’s and another kind of flexible dx dHi(X)
polymers,N’ is the degree of the polymerization of the flex- T DcﬂT +Iy. (22
ible polymers. The second line is the configurational entropy
due to orientational order. The first term in the third line is . e . .
the Maier-Saupe anisotropic interactik8®] that favors nem- H€re€Dc is the diffusion constant of motion along the chain
atic order and the second term in the third line is added as 8"d éx is a thermal noise satisfying the fluctuation-
penalty for the fluctuation of the segment length. The lasdiSsipation theorem. The single-chain Hamiltonidfy, is
two lines are the gradient energy with,=Nb?/12d, L, divenin Sec. Il B and can be considered here as a function of

=Nb%/12, L,=dNb*24 andL,=dNk?/6 [25]. The terms X Using Eq.(9), we obtain after some manipulation
proportional toL; and toL, are the Frank elastic energy. We
note that the free energy of an interface parallel to the nem- ﬁdHtot(X) _
atic orientation is lower than a perpendicular one due to the dx
terms proportional tdq.

The phase behavior is quite complicated and sensitively +he (7 r)iéi-(r r)} (23)
depends on the temperature dependence of the interaction St g
parametersy andw. In a two-dimensional systendE 2)
where simulations discussed below are carried out, secondiere we assume that, and hS”' are a function ofr andr.
order isotropic-nematicl(N) transition occurs aWN¢=2,  Noticing that A(7,t+dt)=A(7+dx,t), A being an arbi-

in contrast to the first-order-N transition at WN¢  trary function ofr, we can derive the following identities:
=4.05141 in a three-dimensional syst¢&b]. When y is

1
+Lo| did;Qij + gQijaid’ﬁj(ﬁ

L 0
J'erOdT[ h(/,(T,r)E_g{)(r,r)

large enough, compositional phase separation can lead to an J . dx d .

LCP-rich phase witwN¢>2 and an LCP-poor phase with (1N =41 7.4(m0), (24
WN@<2. In this situation, phase separation occurs into an

LCP-rich nematic phase and an LCP-poor isotropic phase.

Phase separation of this type is expected in a deep quench ié--(r r= d_x iéi-(r r (25)
and is considered in the simulations given below. gt dt g

D. Kinetic equations Equations(1), (3), (22), (23), (24), and(25) yield

1. Biased reptation model 9 L L P
¢(r):—DCnJ dr’f de d7'{ hy(7',r")
0 0

In this subsection, we will derive the equations of motion 5t 9roT!
for the order parametes andS;; . So far as we know, there

has been only one theoretical study where the equations of X{(d(r,0) (7' 1))

motion for the compositional and the orientational order pa-

rameters are derived on a microscopic basis. Liu and Fre- ? . .

drickson[22] considered a mixture of rigid rods and flexible +hg, (7' 'r,)aﬂ%, <¢(r,r)S”(r’,r’))] + &g

coils and derived the equations of motion for the order pa-
rameters using a dynamical random phase approximation and (26)
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2 £, (LOE, (I ))=—2A, , (r,r')s(t—t"),
Si(r Dnjdrqu.qu_{ (7.1 r9, (&4, ¥, ) 22
oo (Y1,2=¢ or §;). (34
2

~ N J
X<Sij(71r)¢(7-,lr,)>+hSk|(T,lr,)aT(97_,

2. Calculation of the kinetic coefficients

The final task to obtain the equations of motion for the
order parameters is to evaluate the kinetic coefficients given
by Eqg. (33). As can be seen from E33), the kinetic coef-
ficients are determined by the conformation of a single chain
in a local equilibrium state specified §(r),S;(r)} and the
wheren is the number of polymer chains in the system andaverage in Eq(33) can be taken by using the full Hamil-
£y and és are the Gaussian noise terms. We have made tpnian of a single chain as

><<Sj<r,r)ékl<r',r'>>] +és,, (27)

local equilibrium assumption and the average in E2B)
should be taken for the local equilibrium state specified by f DR (7.1) (7,1 )X — BHio1)
{¢(r),S;j(r)}. Equation(23) can be interpreted as <¢1(7- D (7,1 "))=

. f DRexp( — BHior)
,85Htot=fdrf dr{hy(7.1)8¢(7,1)+hs (7.1)85(7.n)}, i X
° ‘ 28 (a0 a7 1) exp(— BH) Yo

(exp(—BH1))o
and we get (35)

OHiot The average over an unperturbed Hamiltonfan: ), is de-
e =hy(rr), (y=¢ or S). (29 fined in Eq.(15). The conjugate field&,(r) and hs, (r) in

‘H, should be taken self-consistently so that the local equi-
When we extrapolate this result to the case whig; is  librium state{4(r),S;(r)} is realized. Unfortunately, rigor-
replaced by the free energy of the entire systBmand ous evaluation of the average appearing in B§) in terms
oy(7,r) by the order parameter variation occurring in theof the conjugate field$ 4 and hs is not possible, nor the

many chain system, we can tal& evaluation of the conjugate fields. Therefore we make a per-
5(BF) turbation expansion of the kinetic coefficieri5) in h, and
hs . Similar treatment was employed by Kawakaftgl) who
z//(T r)_) 5¢(r) (l/j d) or Si ) (30) SIj

studied the effect of the change in the chain conformation on
phase separation kinetics of block copolymer melts.

First we show the results of the zeroth-order calculations
inhg, andhsﬁ. That is, we replace the average in E8@) by

and we obtain the final expression for the equations of mo
tion for the order parameters as

J 8(BF) the average over the unperturbed Hamiltonian defined in Eq.
E¢(r):J dr'y Age(r,r’) (15). We also make a gradient expansion and to the second
op(r’) order in the gradients we obtain the following results:
. 8(BF) voN ,
+A¢Sk|(r,r )5Sk|(r’)]+§¢’ (31) A(ﬁ(ﬁ(r,r/)_%(ﬁ_’[z 26) 25(r ), (36)
J S(BF) , cvoN¢[ ( ”2 ,
—S.(r)= ' ' Ays (ryr')y=——1T aaér—r, 3
S f dr'y Ags, (1 ,r)5¢(r,) ¢s,(1.1") 2 |2 2e (r=r"), (37
8(F) DwoNg[| 202 (dN)
+A r,r' +és 32 Ag g (rr')= - Ti| —
s,jsk,( )6Sk|(r’)] §s” (32 s”skl( ) e l NEH e
with the kinetic coefficients Cdanrer [ANY s
+e IZ Z \Y% (5ik5j|+ 5”5“()
L L 92
A.M&(r,r’):—Dcnf drf dr’ - dN\ 12
1¥2 0 0 adToT +2edN/25[Il( Z)} (5“3( 6,'24_ 5jkﬁi, ﬁI,

X(Pa(1,0) o7 1)),
(1, 4=¢ or S;). (33

T.he.Gagssian n_oise terndg andfs”. satisfy the fluctuation- \yhereV'=g/0r", al=alor!, and ¢ is the average volume
dissipation relation fraction of the polymers. We have defined

+5i|t“7j’(9{(+6ikf7j’(7|’)]6(r—r’), (38)
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n! . n-1 (—x)k also introduce the dimensionless free endN?gﬂvaoﬂF and
—x)" “ k)’ B9 the dimensionless random noise terms~§¢
. o =[d(Nb)?/D.¢]é, and §Slj=[d(Nb)2/Dc¢]§sij. The
and note thaf,(dN/¢€),Z,(dN/2e)— 1 for the rigid rod limit  equations of motion for the order parameters can be rewritten

e/N—c. The detail of the calculation is given in Appendix py ysing Eqgs(31), (32), (40) [or Eq. (36) when we do not

A. ] o consider the fielda , andhg ], (37), and(38) and taking the
Next we proceed to the first order calculation in the con—rigid rod limit €/N—s oo Théj resultant equations are

jugate fields. Although we can make such calculation for
A¢S.j and AS”_SH, their resultant form is quite complicated

Ia(x)=
()(

] SF
and the physical meaning for their modification duehtp —@(r)=49,1(d,+(d, h, o)~ hs ay)g
and hS”' is not clear. Therefore we show the result only for t b(r)
A 44 and we will discuss below the physical meaning of the 2 S6F
modification ofA 44 . The detail of the calculation is given in a9 ss 1y T (44)
Appendix B and the result is given by *
. DoNe¢ i o oF 2 , OF oF
Apalrr) === [ {7 70~ 590 5505 1 Vs
dN) SF
=T\ 5= |dihy(r)o 6(r—r") +2(aiﬁ#—+ajﬁ = || tés, (49
2€ 53“1.(") H 6SIM(r) J

Hereafter all the tildes are omitted for brevity. Since we take

4 (dN)\ 4 [dN dN
| 2Tyl — | = 2T =— |+ T, =— : : . . .
37 e] 37\ 2€ 2e only the first-order terms ih; andhs,, in the simulation we

. retain only the first-order terms iQ;; for these conjugate
X d; (hslj(r’)ai’ 5(r—r’))}, (400  fields. Therefore, using Eqé18) and(19), we take
where hy(n=—In¢(r), (46)
F¢<r>=voN hy(n), (4D _
hs,(r)=—dQy;(r). (47)
hs (r)— (hs (N+hs, (). (42

Before presenting the results of our simulation, we make
some remarks on these kinetic equations. When we deal with
IIl. SIMULATION rigid rodlike polymers and allow them to move only transla-
tionally, which is the case in the biased reptation model, the
orientational order behaves as a conserved var{@iland
in Eq. (45), S is conserved. The orientational order is not
restrict ourselves to the rigid rod case/N—o) and we actually conserved because of the rotational motion of the
. . . ~ L~ polymers, which is not incorporated in the biased reptation
introduce dI_I’T]GI’]SIOﬂk—:"SS Ier]gtkl=x/Nb 'and t|.me.t =£/ model as noted in Sec. I D. In a nondilute solution that we
[d(Nb)?/D.#]. The dimensionless spatial derivativeds  are interested in, rotational diffusion is suppressed due to the
=Nbg; . Then the free energy given in E(R1) can be re-  topological constraint imposed by surrounding chains. In a

Since our model given in Sec. Il is quite complicated,
analytical treatment is difficult. Therefore we numerically |
integrate the kinetic equations for the order parameters. W

written as semidilute solution, D, /[D./(Nb)?]~O(N~6)<1 [20],
1 N whereD, is the rotational diffusion constant, and our model
F= WJ dr[ $Ind+ —(1-¢)In(1-¢) can be considered as a liniit, /[D./(Nb)?]—0. To intro-
vo N duce the rotational diffusion phenomenologically, we can
P add a term like— 7 15F/63] to the right hand side of Eq.
+xN¢(1=¢)— 5TrIn(1+dQ)—dQ; (45), wherer, '= D /[D./(Nb)?]<1.
Next we make a comment on the kinetic coefficinj, .
—3WN@?Tr(Q—(L/d)TrQ)?+ s WN¢(TrQ)? The first term in the right-hand side of E(#4) can be re-
1 written as—V - J,,(r) with
= o~ o= [~ o~
+ gco(fﬂfﬁ) +|—o(f9i¢’f7jQij ¢Q|13 ¢>(9 ¢) ad(r)) oF
pg(N)i=1 —(8;+dQy(r))d; + OREGE (48)
% 1¢(‘9le]) +% 2¢‘9 Quaka]]a (43)
where use has been made of E¢4) and (47). The first

- - - term in Eq.(48) states that polymers have a stronger ten-
where Co=1/1A, Lo=1/12, L,=d/24, L,=d/6 and the dency to diffuse parallel to the nematic orientation. This an-
term proportional td_, has been changed for simplicity. We isotropic diffusion can be incorporated in our model by
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61.192

-

- A
61.245

i A
10.256 61.282

FIG. 1. Time evolution of the phase separation f@rcase 1,b) case 2, andc) case 3 withwN=3. The darkness represents The
numbers are times after quench. Under the same initial conditions.

evaluating the kinetic coefficient ;, in terms of the conju- tional order. To check how phase separation kinetics is
gate fieldhsi_. Withouthsi_ andh,, A, produces only the influenced by the presence df,s and the modification of
isotropic diﬁiusionvzéF/éqb. A 44, we consider the following three caség:without A ;5

We numerically integrate Eq$44) and (45) on a two- ~and withh,=hs =0 in A, (referred to as case 1 below
dimensional 128128 square lattice with the periodic (ii) with A ;5 and withh¢=h51_=0 in Ay, (case 2 and(iii)
boundary conditions using the Euler scheme. In all our simugjth A s and withh,, and hS.]; in Ay, given by Eqs.(46)

lations, we choose the parametgf$=2.7, andWN=>5. The and(47) (case 3. In Fig. 1 we show the time evolution of the
average volume fraction of the polymer is set equalfto phase separation withN=3 for each case. In all the cases,
=0.5. To avoid numerical difficultiet, andhs, are multi- e can observe the formation and coarsening of a percolated
plied by 0.7. We also séti=N’ for simplicity and to avoid network structure rich in polymergblack regiony and
numerical difficulties arising from the smallness ¢fwhen  polymer-poor(white) regions form isolated structures. Such
we setN>N’'. The lattice size and the time step are taken toa network structure has been observed in experiments of
be Ax=0.25 andAt=Atyd i, respectively, where,,i,is  phase separation in systems containing LCH'3,16,17.

the minimum value of¢ and Aty will be specified below. We also note that such an asymmetric morphology has been
We neglect the random noise ter%andfslj in the kinetic qbtained in numerical analyses pf v!scoelastic phase separa-
equations which we believe will not have a significant effecttion [9,10] and of phase separation in elastic materjafs].

on late stage phase separation kinetics. As the initial cond\Ve show in Fig. 2 the orientational order &&61.282 in
tions, ¢ and Q;; at each lattice points are random numberscase 3. Orientational order of polymers parallel to the inter-
uniformly  distributed  in  [$¢—0.01$+0.01] and fa_ce or 'the network structure can 'be obser\_/ed. We note that
[~0.01,0.01, respectively. That is, the initial conditions are orientational order parallel to the mte_rface is _preferable be-
homogeneous and isotropic with no orientational order. cause of the coupling terms proportional ltg in the free

We set the anisotropic interaction parametewfd=3 or energy(43) [25]. Although we do not show the figures, the
5 We takeAt-=0.0002 forwN=3 andAt.=0.00015 for Same behavior for the orientational order can be observed
. 0_ . - 0_ .

- . : . Iso in cases 1 and 2.
WN_.S ' Not(? that phase separation into an |soFrop|c pha.sg To make a quantitative comparison of the growth of the
poor in LCP’s and a nematic phase rich in LCP’s occurs in

our simulations as mentioned in Sec. Il C and that the mag(-)rder for the three cases, we show in Fig. 3 the time evolu-

nitude of the orientational order in a nematic phase becomedon of the quantities 8¢y and(Qfj), where 5¢=¢—¢
larger with increasingvN. We also note that the spinodal andQj; is the traceless part ;; . We also check the time
point for the orientational order iNWgzz for d=2 (see evolution of the characteristic Igngths. As a characteristic
Sec. IV). Therefore when we takeN=5, phase separation Iength, we take a length determined by the interface length
and growth of orientational order occur simultaneously at defined by
=0 and wherwN= 3 the orientational order grows after the
compositional phase separation. A

Characteristic of our kinetic equations, together with the line(t) =
modification ofA ,,, is the presence of the off-diagonal ki-
netic coefficientA ,s, which has been neglected in phenom-
enological studie$18,19 of phase separation with orienta- where A is the area of the system. We also define another

(interface length att) ’ 49
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FIG. 2. Orientational order at=61.282 in case 3 withwN
=3. The length and the orientation of the lines repre&adn;,
respectively, whereb(Q;; — Qyidij/2) = S(nin; — 6;;/2). The length
of the thick solid line corresponds t68=0.5598, the maximum
value ofSin the figure.

characteristic Iength<(t)=27r/?(t), Where?(t) is the aver-
age wavenumber defined E&6]

B fdk kSk,t)
kit)y=——— (50

f dk gk,t) |
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FIG. 4. Time evolution of the characteristic lengthg(t) and
I (t) for wN=3.

lengths start to grow earlier withowt ;s than with A ;5 and

that they start to grow whef¥$?)=0.22. We will return to
this problem in Sec. IV. At=15, the characteristic lengths
obey|~t* with @=1/3, which is a typical growth law for
systems with conserved order parame{dis We can also
observe a slightly faster growth in case 3 than in case 2 at
2=<t=<10.

Experiments on phase separation in mixtures of LCP’s
and flexible polymers show that an evaporation-condensation
process of flexible-polymer-riclLCP-poo) domains and a
breakup process of a network structure rich in LCP’s can be
observed as a coarsening mechan[d]. The coarsening
processes in cases 2 and 3 are illustrated in Fig. 5. In our
simulation both processes occur in case 3 and in cases 1 and
2 (although we have not shown case 1 in Fig. dnly
evaporation-condensation processes can be observed and the
breakage of network structures rich in LCP’s is quite rare.

Here S(k,t) is the circular average of the structure factorTherefore the breakage of a network is attributed to the ten-
S(k,t)={|p(k,t)|?), ¢(k,t) being the Fourier transform of dency of LCP’s to diffuse parallel to the nematic orientation,

#(r,t). The time evolution of the characteristic lengths although in actual systems hydrodynamic flow induced by
(1) andl(t) is shown in Fig. 4. We find from Fig. 3 that capillary pressure may play an important réf®te that our

the compositional order grows faster witholit,s (case 1

than withA ,5 (cases 2 and)3which can be seen also in Fig.
1. We also find from Figs. 3 and 4 that the characteristic

04 T . . T
035+ coooos
03¢
GE 025 |
QA .
X 02 B A
NS - o el -“'::.01--.-0-o~0~0-0'°‘"'
Lo e
S 045} T e (8P Casel) —o— 1
~ | 5 ea (OP(Casel) ~o-
01 | e (¢°)Case2) ——
o (O?)(Case2) o
0.05 | [ (5¢)Case3) —=— |
g (O7)(Case3) @
0 " ! L L L
0 2 4 6 8 10
t

FIG. 3. Time evolution of §¢2) and(@ﬁ-) for wN=3.

model does not incorporate hydrodynamic effect

(a)

- al
21.072 31.107 40.341
| l %‘ ﬁ
21.302 31.033 40.781

FIG. 5. lllustration of the coarsening process in cases 2 and 3
with wN=3. White arrows indicate the evaporation-condensation
mechanism and black arrows indicate the breakage of a network
structure.
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!.\/

0.895 50.263
FIG. 6. Time evolution of the phase separation f@rcase 1,(b) case 2, andc) case 3 withwN=5.

Next we show in Fig. 6 the time evolution of the compo- incorporated in case 3 tends to break up the network struc-
sitional order withwN=5. While we also observe a network ture. In case 3 wittwN=15, orientational order appears ear-
structure rich in LCP’s in cases 1 and 2, droplet morphologylier than inwN=3 and its magnitude is so large that the
can be observed in case 3. In case 3 breakup of the transiemansient structure observed in the early stage breaks up into
network structure occurs befote-3 and is shown in Fig. 7. droplets. We show in Fig. 9 the time evolution of the char-
We note that in experiments on phase separation in mixturescteristic lengths;,;(t) andl,(t). Although we can observe
of LCP’s and flexible polymers, formation of droplets after a typical growth for conserved systeinst/ for case 2, the
the breakup of the network structure is obserfe8]17. The  growth in case 1 is slower than-t* att=10. We also find
process shown in Fig. 7 closely resembles that observed ithat the growth in case 3 is much faster than in case 2. We
experiments. We show in Fig. 8 the growth of the order as ircan conclude from Figs. 4 and 9 that in our model the ten-
Fig. 3. We find a faster growth of the compositional orderdency of LCP’s to diffuse parallel to the nematic orientation
without A 45 than with A 45 as in the cases wittyN=3. We incorporated in case 3 fastens the coarsening kinetics in late
also find a faster growth of the orientational order than in thestages.
cases withwN=3 and the magnitude of the orientational
order is larger than imvN=3. As mentioned above, the ten- IV. LINEAR ANALYSIS OF THE GROWING MODE
dency of LCP’s to diffuse parallel to the nematic orientation

The presence of the off-diagonal kinetic coefficigngs
together with the coupling o and S;; in the free energy
leads to the growth of the compositional order and the ori-
entational order in a coupled fashion. To check hévand
S evolve in the early stage, we perform a linear analysis of
the growing modes from a homogeneous and isotropic state

0.4 I j T T T T T T
o p-o R o e iAo
035 | B pac-S
03 r
S 025 f
QA '
<
{g‘ 0.2}
S (8¢°)(Casel) j
- (O))(Casel) o
1 <‘Sj’£ YCase2) —+— A
(D3N (Case2) -~
0057 <5¢£>(Case3) . |
| (0F)Case3) -~
7 0 Ll g . I I . . ‘ I
2.098 2.585 0 05 1 15 2 25 3 35 4 45 5

FIG. 7. Breakup of the transient network structure in case 3 with { ~
WN=5. FIG. 8. Time evolution of §¢?) and(QiZj) for wN=5.
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692 d? —
? ——WN¢+

—0
¢E 0Qijq= — >

1 2
Lyt 5'—2 q°|6Qijq.

10 (5Qij= 6Qy, OF 8Qyy). (56)

These four modes can grow wth$> d?/2. The maxi-
mum growing rate is given by

lin(Casel) ——

£ oo 350“ l{Casel) -0 _ d2\2
00 32 e~ ' IndCase2) —+— (wN¢— -
l{Case2) -~
lin(Case3) —e— }\*:? (for 6Qux— 5ny and&QXy)a (57
1 I(Case3) o 2d°L, ¢
0.1 1 10 100 212
FIG. 9. Ti lution of th 1;1 istic lengths(t) and 3(WN¢_7>
. 9. Time evolution of the characteristic lengthg(t) an .
() for wN=5. IRy (for 6Q,, andéQy,), (58)

8¢(r)=¢(r)— =0 and Q;;(r)=0. The linearized equa- and the corresponding wave number is

tions are
—d
i&ﬁ ___o0F  2qq oF 51) WN¢— =
% 956 TP ssy a*= N —5—— (for 6Q—Qy, and 6Qyy), (59
1

—d
— 50 = —p—a 7~ Z
¢=9Qijq= —P—y 5 2 oS /WNE—%
*: —_—
4 SF SE q 2,71, (for 6Qy, and 5Q,). (60

2 QiQKKjk‘FQijE , (52

We also find thatv¢, 6Q,, and 5Q,, evolve in a coupled
wheregq; is the wave number and=1 with A 45 (cases 2 manner and their time evolution can be described by
and 3 andp=0 without A 45 (case 1. The 6¢4 and 6Q;j
are the Fourier transform ob¢(r) and 6Q;;(r), respec-

2

tively. The linearized functional derivatives are E&éq: _qz{ A+ %qz) Spgt Loq25szq] _ pqu

oF Co ,

56 A+ =0 | 6¢qt Lok 6Qxig. (53 Lo , d? — )

é X ?q S¢qt| 5 ~WNo+(L1+L2)q7 | 6Q.4

oF [d? — WN¢ —
— === 2 . . . WN
5S, (2 WN¢+L4q )5Q,Jq+ d +WN| 6;; 6Quiq + T¢+WN 5Qkkq]v (61)

1 Lo

+7L2(0;0k0QikgT 4idkdQjkg) + =0i0; 0P, (54)
¢ g 2¢?([  Co ,

o o ¢E 5szq= - pT A+—=q 5¢q+ Log 5szq

with A=1/é+ 1/(1— ¢) — 2xN. ¢
Since the initial state is isotropic, there is no preferred 5 5
direction and we take the wave numbgparallel to thez _ 10q L__0q25¢ + ——wNE
axis. Then we find four independent modé®,,— 5Qy,, d? | ¢ 12
6Qyy, 6Qy, and 6Qy,, the linearized equations for which
can be written as
+(L,+ Lz)q2)5szq
Fo 5Q 2q2< i Ne+L 2>5Q n
- 0QijgT 5| 5 W 19 ijq wN
gt o T T2 2 ijq N d¢+WN 5Qkkq}i

(5Qij =6Qux— 5ny or 5Qxy)y (55 (62)
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(a) (a)
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6
4t
2
0

(b) (b)

FIG. 10. Growth ratex of the coupled mode 06, 5Q,, and FIG. 11. Growth rate\ of the coupled mode 06¢,5Q,, and
5Qu for (&) wN=3 and(b) wN=5 is shown by three solid lines. 5q,, for (3 wN=3 and(b) wN=5. The solid line represents the
We also show the growth rate @Q,, by dashed lines for refer- 55e with Aus(p=1) and the dashed line without 4(p=0).
ence. Only the most unstable mode associated with the compositional

order is shown.

4 2 C
d’E&Qkkq:_qu A+ =¢? Syt Loq25szq] growth rate of all the modes aj=0 is zero because the
¢ orientational order as well as the compositional order be-
8q2( 5L, d2 o haves as a conserved variable in our m@zi Sec. ).
- _|__q25¢q+ ——wN¢ We show in Fig. 11 the growth rate of the most unstable
d* | 4¢ 2 mode associated with the compositional ordef for the
) — cases WithA 4g(p=1) and withoutA ;5 (p=0). The maxi-
L.+ EL )qz}éQ + d_+ W_N¢ mum growing rate\* and the corresponding wave number
11472 418 d g* are shown in Table I. The wave number of the mode with
q L the maximum growing rate is not significantly different be-
2 tween the cases without and with,g, while the maximum
Tl 1t g WN g 5Q"kq] ' 63 growth rate is smaller withh s thu:z withoutA s, which is

responsible for the slow growth of the compositional order
. . . with A 45 observed in our simulation. We note that the sup-
#S
Slmlla.r re;ults have been obtained n Re®l] and[22]. We pression of the compositional order in the early stage of the
show in Fig. 10 the growth rate of this coupled mode as a
function of the magnitude of the wave numbxrfor wN TABLE I. Maximum growing ratex* and the corresponding

=3 ahd 5 Wl.thp:.l (with A¢S) and the other pgrameter§ wave numberg* of the mode associated with the compositional
used in our simulations. The most stable mode with negative .

\ for all g>0 is associated with the fluctuation of the seg-
ment length or trace oR;;, and the intermediate mode, A* q*
stable forwN=3 and unstable fowN=5, is related to the
orientational order. Note that the spinodal point for orientawN  without A 45 with Ays  without A 45 with A s

tional order isz=d2/2$=4 because in our simulatioth 3 7.00 3.89 3.20 3.16

=2 and we setﬁTz 0.5. The most unstable mode represents 5 7.39 4.02 3.24 3.24
the growth of the compositional ordeip. Note that the
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phase separation due to the off-diagonal coupling with an- 2

D
other degree of freedom has been observed in a numerical ; ,(r,r')=— C:vO(zé(r—r’)
analysis of the viscoelastic phase separafihtQ]. bV
—(8(r=r"=[R(0)=R(L) D)o
V- CONCLUSION —(80 =" ~[R(L) = RO)D)o), (A2)

In this paper we have investigated phase separation kinet-
ics of main-chain LCP’s by numerically solving the coupled whereV is the volume of the system. Using the Fourier
time-dependent Ginzburg-Landau equations for the compdfansform we can derive
sitional order parametep and the orientational order param-
eterS;; . The kinetic coefficients are calculated by using the(5(r—r'—[R(0)—R(L)]))o
biased reptation model and one of the coefficiefts, is

evaluated by a perturbation expansion in self-consistent 1 ig (1) .

fieldsh,, andhs, conjugate to the order parameters. By this = 5 dge (exp{—ig-[R(L)=R(0)]})o
treatment we can incorporate the tendency of LCP’s to dif-

fuse parallel to the nematic orientation. We have shown that 1

the phase separation leads to a network structure rich in poly- =~ w[ dge'a(rr)

mers and that the orientation of the polymers is parallel to

the inter_face between polymer-rich regions anql pplymer- X{exp(—%Qiqj'([Ri(L)—Ri(o)][Rj(L)—Rj(O)])o}-

poor regions. The presence of the off-diagonal kinetic coef-

ficient A ;s suppresses the growth of the compositional order (A3)
in the early stage, which has been shown by a linear analysis - i ) )
of the growing modes. We have also shown that the tendencynere we have utilized the fact thitis a variable with a

of the polymers to diffuse parallel to the nematic orientationGaussian distribution. To evaluate the average appearing in
causes the breakage of the network structure. In conclusiof£d- (A3), we make a normal mode analydig5,31. The

the coupling between compositional order and orientationakourier transform oR(7) is

order in the kinetics as well as in the free energy plays a

significant role in phase separation and domain morphology R 1 fw drR(ne ¢ (Ad)
i J =— TR(7)e™'s7,
in LCP’s. 3 \/ﬁ e
ACKNOWLEDGMENTS where summation ovef is replaced by an integral, suppos-

. . . ing an infinite chain. This treatment greatly simplifies the
The author is grateful to Professor Akira Onuki, Professorgq qiation because we can neglect the inhomogeneity at the
Toshihiro Kawakatsu, Dr. Hiroya Kodama, and Takeaki

. 3 - chain ends. From the wormlike-chain Hamiltoniéf) and
Araki for helpful discussions and comments. Part of the nqu (8), we obtain
merical computation in this work was carried out at the ~
Yukawa Institute Computer Facility. This work was partially
supported by a Grant-in-Aid for Scientific Research from the B\ — - '
Ministry of Education, Science and Culture. (RicRj¢')o d? L\ o djdlete).  (AS)
m+€b§ &

APPENDIX A: ZEROTH-ORDER CALCULATION . o
OF THE KINETIC COEEFICIENTS Using Eq.(A5), we can calculate the average appearing in
Eqg. (A3) and the result is
In this Appendix we calculate the kinetic coefficients up

to zeroth order in the conjugate fieltlg and hS.;' First we L2 /dN
rewrite Eq.(33) as ([Ri(L)=Ri(O)J[R(L) = R;(0) )= &; FIZ(Z)’ (AB)
Ay (rr)=— Dn{(Pa(L,1) dp(L,r")) whereZ, has been defined in E(B9). From Eqs(A2), (A3),
and (A6) we obtainL,, and expanding EqA3) in g
+ (P (00) (0 ) = (1 (0F) (L, r")) (equivalent to the gradient expansjoand taking the terms
) ) up to second order im, we finally obtain Eq.(36) (notice
— (P (L) (0"))}, that the average volume fraction of polymers is
=voNn/V).

We can also calculata¢sij and Asljskl in a similar way

= . (A1
(Y1.42=¢ 01 §). (A1) by noticing that

Here we replace the average in E41l) by the average 1
defined in Eq.15). By using Egs(2) and (A1), the coeffi- <ui(7-)uj(7-)— —5ij> =0, (A7)
cientA ,, can be rewritten as d 0
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(8(r=r"=[R(0)=R(L)BH1)o

0 1 . ' . 12%0)

— ra—ig-(r—r")q—iq -r
4N\ 12 (277)20'] dqf dg'e e f dr
dIl (5|k51I+5|I51k) (AS)

1 1
<(ui(0)uj(0)_ a5ij)(uk(0)ul(o)_ a5ij)>
0

1
<(Ui(L)Uj(L)— a5ij)[Rk(l—)_Rk(o)][RI(L)_RI(O)]>

X < @it (RO)~R(L)g=iq" - (R(7) ~R(L))

1

hy(d')+| ui(mu;(7) — |Jhs(Q)]>, (B2

0

1

= @wikb‘jl + 8 5jk)’ (A9) where we have introduced the Fourier transform

) ni@= [ drevhym, =g ors). ®9)
<(Ui(0)uj(0)— a5ij)<uk(|—)u|(|-)— a5u)>
0

We make an expansion in terms of the wave numiexad
1 g’ as in Appendix A and we also here retain the second-order
= e dN/g SikSji+ 818k, (A10) termsin the wave numbers. Then the average in(Bg) is

d2
(- +)Yo=(zeroth-order terms iq)+qkq,’[([Rk(O)— R(L)]
1 1

<(ui(|—)uj(|-)_ a5ij)(uk(L)U|(|—)— a5k|)
X[R(7)— R|(L)])oh¢(t1')+<[Rk(0)—Rk(L)]
X[RL(L)=RLO)][R,(L)— RV(O)]>

1
° X[R|(T)—R|(L)](Ui(T)Uj(T)—a5ij)> hs..(Q')J
L2 dN o
= E{ e““%(z) 8,,,( Ok 651+ 8 Ojk)
- %%%[([Rk(o)— R«(L)I[Ri(0)

+e dN/2e

dN\ |2
I e (31 (6,651 + 61,65)

—Ri(L)])ohy(a") + < (Rk(0)— Rk(l—))( Ri(0)
+6j,(0 611+ 61,0ik) + Ol 65,61+ 6i,,0)1)

1
+5m(5iy5ik+5iv5jk))]- (A11) —Rl(L))(Ui(T)Uj(T)—a5ij)> hsij(OI’)]- (B4)
0

: _ Zeroth order terms i yield 8(r—r’){BH1)o and eventually
;?#SS%QSEASQQ (éc?s)(Aglp)\ga{ncg'?ig and (A11) can be ob cancel out by the first term in the right-hand side of B1L).
' Evaluating the averages in E@4), we obtain

APPENDIX B: CALCULATION (8(r—r"—[R(0)—R(L)DBH1)o
OF THE KINETIC COEFFICIENT A, FIRST ORDER )
IN THE CONJUGATE FIELDS _ Zig(r=r")a—iq -1’Y0
de qu dg'e e b

Here we show the calculation of the kinetic coefficient
A 44 as a perturbation expansion up to first order in the con- (
2
3

akay

1
(or—r"—[R(0O)—R(L)])) ( ) 2 (
=(8(r—r'—[R(0)—R(L)))o(1+{BH1)o) L3

d L3[4 _ [dN
—(8(r—r'=[R(0)=R(L)])BH1)o,  (B1) 2qm|5md1426)mxd) dJi%( )

jugate fieldsh, and hSij' In this calculation,A 4, is also
given by Eq.(A2), where the average should be replaced as

2 [dN
ZS T

L3
)5k| Q)+
dN
5e ”(5|k5|+5i|5jk)hsij(ql)]

which can be obtained by making a perturbation expansion

of Eg. (35) in terms of the interaction Hamiltoniak,. By - §Is( P
using Egs(2), (4), and(9), the last term in Eq(B1) can be

written as (B5)

dN
+IZ( ”(5lkéjl+5lléjk)hs (ql )})
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The first term in Eq(B1) is evaluated to be

(60r—r"=[R(0O)—R(L)]))o(1+(BH1)o)

where we have used the results in Appendix A and retained
up to the second-order terms in the gradients. The second
term in Eq.(B6) cancels out as noted before. Then we have

L?_[dN)\_,, ,
1+ EIZ(Z Ve é(r—r')
+(BH1)od(r—r")

L? [dN s
+EIZ(Z)<BH1>OV (r=r’),

(B6)

to retain only the zeroth order terms in the gradidptg in
the Fourier spadefor (8H;) and we get
(BH1)o=voNhy(r"). (B7)

Finally, we obtain Eq(40) by using Eqs(A2), (B1), (B5),
(B6), and(B7).
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