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Phase separation kinetics of liquid crystalline polymers: Effect of orientational order

Jun-ichi Fukuda
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 21 September 1998!

Phase separation kinetics of main-chain liquid crystalline polymers~LCP’s! is investigated by numerically
solving time-dependent Ginzburg-Landau equations for the compositional order parameterf and the orienta-
tional order parameterSi j . The kinetic coefficients are evaluated by using the biased reptation model with a
microscopic model of wormlike chains. In numerical simulations we find the formation of a percolated network
structure rich in LCP’s that resembles that observed in experiments. In our kinetic equations the coupling
between compositional order and orientational order appears in~i! the presence of the off-diagonal kinetic
coefficientLfS and~ii ! the dependence of the kinetic coefficients onSi j ~LCP’s tend to diffuse parallel to the
nematic orientation!. We show by a linear analysis of the growing modes that the presence ofLfS suppresses
the growth of the compositional order in the early stage. We also show that the tendency of LCP’s to diffuse
parallel to the nematic orientation is responsible for the breakage of the network structure.
@S1063-651X~99!14303-4#

PACS number~s!: 61.25.Hq, 64.70.Md, 64.75.1g
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I. INTRODUCTION

The kinetics of phase separation has been an impor
and challenging problem in statistical physics@1# and poly-
meric systems have attracted great theoretical and tec
logical interest. Experimental studies of phase separation
netics in polymeric systems have thus been extensiv
performed@2# and it has been shown that binary homopo
mer blends belong to the universality class of simple fluids
many cases, although the temporal and spatial scales
much more enlarged than in simple fluids. However, ph
separation in polymeric systems can be significantly differ
in dynamical as well as static aspects from that in sim
fluids because polymer chains have internal degrees of f
dom due to the chain connectivity and are spatially exten
because of their large molecular size@3–5#. For example,
block copolymers, composed of different types of homopo
mer chains covalently connected to one another, show
crophase separation to form rich variety of periodic str
tures such as lamellae, cylinders, and spheres dependin
the temperature and the composition of a single chain. M
rophase separation does not occur in block copolymer m
because the characteristic size of phase-separated dom
cannot exceed the length of a single polymer chain. Rec
studies on kinetics of block copolymer melts@6,7# have
shown that changes in the chain conformation at the in
faces between phase-separated domains have an impo
effect on the phase transition kinetics. It has also been sh
that the dynamical aspect of phase separation in poly
solutions is significantly different from that of simple liquid
By quenching semidilute polymer solutions into an unsta
temperature region, a transient network structure rich
polymers has been observed@8#. This unusual behavior is
attributed to the large difference in viscoelastic propert
between polymers and solvents@8–11#.

Liquid crystalline polymers~LCP’s!, which have attracted
much technological attention because of their industrial
plications such as optical devices and fibers of high ten
strength, are another good example whose phase separ
PRE 591063-651X/99/59~3!/3275~14!/$15.00
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is significantly different from that of simple liquids. Main
chain LCP’s have mesogenic units in their backbones
show nematic order in suitable conditions. From statisti
mechanical point of view, phase separation of LCP’s is
fascinating but difficult subject because of the coupling b
tween the compositional order and the orientational ord
Phase diagram of systems containing LCP’s is quite comp
and sensitively depends on the properties of the system
as isotropic and anisotropic interaction parameters@12#. Ex-
periments have been performed concerning the phase s
ration kinetics and morphology of LCP’s. For examp
phase separation of LCP solutions lead to fibrillar netwo
domains rich in LCP’s even when the volume fraction
LCP’s is relatively small@13#. Mixtures of LCP’s and low-
molecular-weight liquid crystals in a nematic state exhibi
nematic-nematic phase separation to form anisotropic d
lets @14# or striated patterns parallel to the nematic directi
@15#, which clearly indicates that orientational order has
significant effect on compositional phase separation. LC
also have an experimental advantage that we can purs
real space analysis on mechanism of phase separation
cause the isotropic phase poor in LCP’s and the anisotro
phase rich in LCP’s give a remarkable contrast by polariz
light microscopy@16,17#. Observation of a process of phas
separation in 50:50 mixtures of LCP’s and flexible polyme
shows that percolated network structures rich in LCP’s
initially formed and that they break up and shrink to drople
@16,17#.

The aim of this article is to investigate phase separat
kinetics of LCP’s. As noted in the preceding paragraph, o
entational order as well as compositional order must
traced to describe the process of phase separation and
coupling of these two order parameters makes the prob
quite complicated. Hence there have not been enough t
retical studies focused on the dynamical aspect of the ph
separation in LCP’s, and it still remains unclear how orie
tational order affects the phase separation kinetics of LC
in late stages. Some previous attempts were based on p
phenomenological arguments and by using the time dep
3275 ©1999 The American Physical Society
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3276 PRE 59JUN-ICHI FUKUDA
dent Ginzburg-Landau~TDGL! equations for the order pa
rameters, linear analysis of the growing mode@18#, and nu-
merical analysis of the time evolution of domain morpholo
@19# were given. There also exist some other studies o
microscopic basis. They are based on the Doi equation@20#,
the equation for time evolution of the positional and orien
tional distribution function for rigid rods. Shimada, Doi, an
Okano @21# derived the linearized equations describing t
growth of the order parameters by projecting the Doi eq
tion to the equations for the compositional and the orien
tional order parameters. Liu and Fredrickson@22# derived the
TDGL equations and the kinetic coefficients were derived
using the Doi equation and a dynamical random phase
proximation. In this work we will consider the TDGL equa
tions of motion for the compositional scalar order parame
f and the orientational order parameter of second-rank
sor Si j , and derive the kinetic coefficients on a differe
basis, the biased reptation model@6#. Characteristic of our
model are the presence of the off-diagonal kinetic coeffici
LfS and the introduction of anisotropic diffusion induced
orientational order. Liu and Fredrickson@22# have already
shown that the off-diagonal kinetic coefficient should app
in the kinetic equations. However, phenomenological ana
ses@18,19# have neglected this off-diagonal kinetic coef
cient and our numerical studies@23,24# have shown that it
has a significant effect on phase separation kinetics. An
tropic diffusion naturally arises in a nematic state beca
LCP’s tend to make Brownian motion parallel to themselv
rather than perpendicular to themselves in nondilute s
tions @20#. However, so far as we know, there has been
attempt, even phenomenologically, to incorporate this k
of anisotropy to kinetic coefficients to reproduce anisotro
diffusion.

This article is organized as follows: In Sec. II, we form
late our model. We define the compositional and the ori
tational order parameters in Sec. II A. In Sec. II B, we gi
the Hamiltonian of a single chain that will be used throug
out the calculations given below. In Sec. II C, we show t
free energy functional of the system in terms of the or
parameters defined in Sec. II A. Derivation of the kine
equations is given in Sec. II D. In Sec. III, we give the resu
of the numerical integration of our model. In Sec. IV, w
perform a linear analysis of the growing modes from an i
tropic and homogeneous state. we give a brief conclusio
Sec. V.

II. MODEL

A. Order parameters

We consider a solution of main-chain liquid crystallin
homopolymers. As noted in the Introduction, the orien
tional order as well as the compositional order~or the density
of the polymers! must be specified to describe the state of
system. To this end we introduce the following two ord
parameters. One is the volume fraction of the polymers
fined as

f~r!5(
a

E
0

L

dt f̂a~t,r! ~1!

with
a
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f̂a~t,r!5
v0

b
d„r 2Ra~t!…. ~2!

Here v0 and b are the monomer volume and the avera
distance between adjacent monomers, respectively,
L5Nb, N being the degree of polymerization. Thea is the
chain index and the configuration of thea-th chain is repre-
sented byRa(t), wheret parametrizes the position along th
chain running from 0 toL. The other is the orientationa
order, which is defined by

Si j ~r!5(
a

E
0

L

dt Ŝi j
a~t,r! ~3!

with

Ŝi j
a~t,r!5

v0

b Fui
a~t!uj

a~t!2
1

d
d i j Gd„r 2Ra~t!…, ~4!

where

ui
a~t![

]Ri
a~t!

]t
~5!

andd is the spatial dimension of the system. From the de
nition Si j is symmetric andSi j 50 in the equilibrium isotro-
pic state.

B. Single-chain Hamiltonian

In the calculation of the free energy@25# and the kinetic
coefficients given below, a microscopic model for a sing
chain is necessary. A main-chain LCP is stiff due to t
mesogenic units along the chain and the bending energy
chain can be described as

bHbend5E
0

L

dt
eb

2 S ]u~t!

]t D 2

, ~6!

whereb and e are the inverse temperature and the~dimen-
sionless! bending elastic constant, respectively, andu is de-
fined in Eq. ~5!. Equation~6! with the constraint of local
inextensibility uu(t)u51 is a typical model of a wormlike
chain and the properties of this model have been extensi
studied@26–28#.

Another model has also been studied for a wormlike ch
where local inextensibility of the chain is not imposed@28–
31#. Then for the model to be well defined, a penalty for t
stretching of the chain must be added to the Hamiltonian
the resulting energy for a single chain can be written as

bH05E
0

L

dtH d

2lb
u~t!21

eb

2 S ]u~t!

]t D 2J , ~7!

where the first term penalizes the stretching of the chain
another elastic constantl is introduced. Here we impos
the constraint 15^u(t)2&0[*DRu(t)2exp(2bH0)/
*DRexp(2bH0) instead of the constraint of local inexten
sibility uu(t)u51. Then we obtain@25,31#

l 5
4e

d
~8!
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and the properties of a single chain can be described b
single bending elastic constante.

In our calculation of the free energy@25#, Eq.~7! has been
adopted as a single chain Hamiltonian instead of Eq.~6! with
the constraint of local inextensibility because the Gauss
property of the Hamiltonian~7! greatly facilitates the calcu
lation of the free-energy functional. Therefore we also ad
Eq. ~7! for the calculation of the kinetic coefficients give
below. We note that since the model given by Eq.~6! allows
the fluctuation ofuu(t)u, the orientational order paramete
Si j is not necessarily traceless, although it is traceless in
usual liquid crystals@32#. We also note that Gupta and Ed
wards @34# have extensively studied the phase behavior
LCP’s using the Hamiltonian~7!.

Finally, for the sake of convenience in the discussion
low, we introduce the fieldshf(r) and hSi j

(r) conjugate to

the order parametersf(r) and Si j (r), respectively. The
Hamiltonian due to these conjugate fields can be written

bH15E drE
0

L

dt$hf~r!f̂~t,r!1hSi j
~r!Ŝi j ~t,r!%, ~9!

wheref̂(t,r) andŜi j (t,r) have been defined in Eqs.~2! and
~4!. Hereafter summations over repeated indices are imp
The total Hamiltonian for a single chain is

bHtot5b~H01H1!. ~10!

C. Free energy

In this subsection, we briefly review the calculation of t
free-energy functional in terms of the order parametersf and
Si j @25#. There have been numerous studies concerning
phase diagram of systems containing LCP’s and Liu a
Fredrickson derived the free-energy functional for semifl
ible polymer blends as a Landau-de Gennes expansio
terms of the orientational tensorial order parameter@33#. Our
calculation of the free-energy functional is similar to that
Liu and Fredrickson except that our calculation uses
single-chain Hamiltonian~7! while that of Liu and Fredrick-
son is based on the microscopic model of an inextens
wormlike chain ~6!. In the mean field approximation, th
form of the free-energy functional is@25#

bF$f,Si j %52E drS 1

v0N
f~r!1hf~r!f~r!

1hSi j
~r!Si j ~r! D . ~11!

The relation between order parameters and conjugate fi
for noninteracting ideal chains is given by

f~r!52
dz0$hf ,hSi j

%

dhf~r!
, ~12!

Si j ~r!52
dz0$hf ,hSi j

%

dhSi j
~r!

, ~13!

where z20$hf ,hSi j
% is the partition function of a single

chain,
a
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z20$hf ,hSi j
%5Z̃E DR~t!exp~2bHtot!

5Z^exp~2bH1!&0 . ~14!

Here Z̃ is the contribution from the kinetic energy andZ
5Z̃*DR(t)exp(2bH0). The average in~14! is taken over
the unperturbed Hamiltonian and defined by

^•••&05E DR~t!•••exp~2bH0!/E DR~t!exp~2bH0!.

~15!

Monomer interaction is taken into account by the rand
phase approximation~RPA!. In the RPA, response of poly
mers to the fieldshf andhSi j

is considered to be the same
that of noninteracting polymers, that is, the relation betwe
the order parametersf and Si j and the conjugate fieldshf
andhSi j

for interacting chains is also given by Eqs.~12! and

~13!. However, the fieldshf and hSi j
themselves are cor

rected to take into account monomer interactions as

hf~r!5hf
0 ~r!1hf

int~r!, ~16!

hSi j
~r!5hSi j

0 ~r!1hSi j

int~r!, ~17!

wherehf
0 andhSi j

0 are the fields that noninteracting polyme

feel and their explicit form, which will be discussed below
can be obtained by inverting Eqs.~12! and ~13!. The addi-
tional fieldshf

int andhSi j

int represent monomer interaction. Th

isotropic interaction that favors demixing is inhf
int and the

anisotropic interaction that induces nematic ordering and
penalty for the fluctuation of segment length can be incor
rated in hSi j

int . The explicit form ofhf
int and hSi j

int are given

when we discuss the final form of the free-energy function
The calculation ofhf

0 andhSi j

0 requires the evaluation o

z20. However, we cannot calculatez20 analytically and we
make a perturbation expansion in terms ofhSi j

0 and a gradient

expansion. Fortunately in zeroth order in the gradients
for the rigid rod limit (e→`), we can evaluate
z20 exactly and inversion of Eqs.~12! and ~13! yields

v0Nhf
0 52 lnS f

v0NZD2 1
2 Tr ln~11dQ!

2 1
2 ~11dQ! i j

21dQji , ~18!

2
v0N

d
~hSi j

0 1hSji

0 !5~11dQ! ik
21dQk j , ~19!

where

Qi j ~r![
Si j ~r!

f~r!
~20!

is the orientational order per segment,1 is ad3d unit matrix
and (11dQ) i j

21 is the element of the inverse matrix o
11dQ. Tr implies taking the trace of a matrix.

In Ref. @25#, the gradient expansion up to second orde
taken in evaluatingz20 and only the terms up to secon
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3278 PRE 59JUN-ICHI FUKUDA
order in Qi j are retained for the second-order terms in
gradients. Taking into account the interaction terms and
degrees of freedom of the solvents, we obtain the final fo
of the free energy as

F5
1

v0bE drH f

N
ln f1

12f

N8
ln~12f!1xf~12f!

2
f

2N
Tr$ ln~11dQ!2dQ%2

1

2
wf2Tr~Q2~1/d!Tr Q!2

1 1
2 Wf~Tr Q!21

1

2f
C0~] if!2

1L0S ] if] jQi j 1
1

2f
Qi j ] if] jf D1 1

2 L1f~]kQi j !
2

1 1
2 L2@ 1

2 ~f] iQi j ]kQk j1f]kQi j ] iQjk!#J . ~21!

The first line is the conventional Flory-Huggins energy w
an isotropic interaction parameterx and N851. When we
consider the blends of LCP’s and another kind of flexib
polymers,N8 is the degree of the polymerization of the fle
ible polymers. The second line is the configurational entro
due to orientational order. The first term in the third line
the Maier-Saupe anisotropic interaction@32# that favors nem-
atic order and the second term in the third line is added a
penalty for the fluctuation of the segment length. The l
two lines are the gradient energy withC05Nb2/12d, L0
5Nb2/12, L15dNb2/24 andL25dNb2/6 @25#. The terms
proportional toL1 and toL2 are the Frank elastic energy. W
note that the free energy of an interface parallel to the n
atic orientation is lower than a perpendicular one due to
terms proportional toL0 .

The phase behavior is quite complicated and sensitiv
depends on the temperature dependence of the intera
parametersx and w. In a two-dimensional system (d52)
where simulations discussed below are carried out, sec
order isotropic-nematic (I -N) transition occurs atwNf52,
in contrast to the first-orderI -N transition at wNf
54.051 41 in a three-dimensional system@25#. When x is
large enough, compositional phase separation can lead
LCP-rich phase withwNf.2 and an LCP-poor phase wit
wNf,2. In this situation, phase separation occurs into
LCP-rich nematic phase and an LCP-poor isotropic pha
Phase separation of this type is expected in a deep qu
and is considered in the simulations given below.

D. Kinetic equations

1. Biased reptation model

In this subsection, we will derive the equations of moti
for the order parametersf andSi j . So far as we know, there
has been only one theoretical study where the equation
motion for the compositional and the orientational order
rameters are derived on a microscopic basis. Liu and F
drickson@22# considered a mixture of rigid rods and flexib
coils and derived the equations of motion for the order
rameters using a dynamical random phase approximation
e
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the Doi equation@20#, the equation of motion for the posi
tional and orientational distribution function of rigid rod
Our derivation of the equations of motion is on a differe
basis, the biased reptation model@6#. In the biased reptation
model, polymer chains make the Brownian motion under
fields they feel (hf andhSi j

in our case!. A crucial assump-
tion of this model is that polymer chains can move on
along themselves because of the topological constraints
posed by the surrounding chains. That is, only the tran
tional diffusion parallel to the chains is allowed and we n
glect the rotational diffusion and the translational diffusi
perpendicular to the chain, which are suppressed in nond
solutions due to the entanglement@20#. We also neglect the
hydrodynamic effect, though it might play an important ro
in late stage phase separation.

Here we briefly review the argument of the biased rep
tion model by Kawasaki and Sekimoto@6# and show how
their argument can be extended to our case. The repta
motion of a single chain along itself can be represented b
single parameterx(t), which has the same unit as the para
eter t characterizing the position of the segment along
chain. The Langevin equation forx can be given by

dx

dt
52Dcb

dHtot~x!

dx
1zx . ~22!

HereDc is the diffusion constant of motion along the cha
and zx is a thermal noise satisfying the fluctuatio
dissipation theorem. The single-chain HamiltonianHtot is
given in Sec. II B and can be considered here as a functio
x. Using Eq.~9!, we obtain after some manipulation

b
dHtot~x!

dx
5E drE

0

L

dtH hf~t,r!
]

]t
f̂~t,r!

1hSi j
~t,r!

]

]t
Ŝi j ~t,r!J . ~23!

Here we assume thathf andhSi j
are a function oft and r.

Noticing that A(t,t1dt)5A(t1dx,t), A being an arbi-
trary function oft, we can derive the following identities:

]

]t
f̂~t,r!5

dx

dt

]

]t
f̂~t,r!, ~24!

]

]t
Ŝi j ~t,r!5

dx

dt

]

]t
Ŝi j ~t,r!. ~25!

Equations~1!, ~3!, ~22!, ~23!, ~24!, and~25! yield

]

]t
f~r!52DcnE dr8E

0

L

dtE
0

L

dt8H hf~t8,r8!
]2

]t]t8

3^f̂~t,r!f̂~t8,r8!&

1hSi j
~t8,r8!

]2

]t]t8
^f̂~t,r!Ŝi j ~t8,r8!&J 1jf ,

~26!



n
e

b

he

o

he
ven

ain

-

ui-

er-

on

ns

Eq.
ond

PRE 59 3279PHASE SEPARATION KINETICS OF LIQUID . . .
]

]t
Si j ~r!52DcnE dr8E

0

L

dtE
0

L

dt8H hf~t8,r8!
]2

]t]t8

3^Ŝi j ~t,r!f̂~t8,r8!&1hSkl
~t8,r8!

]2

]t]t8

3^Ŝi j ~t,r!Ŝkl~t8,r8!&J 1jSi j
, ~27!

wheren is the number of polymer chains in the system a
jf and jSi j

are the Gaussian noise terms. We have mad
local equilibrium assumption and the average in Eq.~33!
should be taken for the local equilibrium state specified
$f(r),Si j (r)%. Equation~23! can be interpreted as

bdHtot5E drE
0

L

dt$hf~t,r!df̂~t,r!1hSi j
~t,r!dŜi j ~t,r!%,

~28!

and we get

b
dHtot

dc~t,r!
5hc~t,r!, ~c5f or Si j !. ~29!

When we extrapolate this result to the case whereHtot is
replaced by the free energy of the entire systemF and
dc(t,r) by the order parameter variation occurring in t
many chain system, we can take@6#

hc~t,r!→
d~bF !

dc~r!
~c5f or Si j !, ~30!

and we obtain the final expression for the equations of m
tion for the order parameters as

]

]t
f~r!5E dr8H Lff~r,r8!

d~bF !

df~r8!

1LfSkl
~r,r8!

d~bF !

dSkl~r8!
J 1jf , ~31!

]

]t
Si j ~r!5E dr8H LfSi j

~r8,r!
d~bF !

df~r8!

1LSi j Skl
~r,r8!

d~bF !

dSkl~r8!
J 1jSi j

, ~32!

with the kinetic coefficients

Lc1c2
~r,r8!52DcnE

0

L

dtE
0

L

dt8
]2

]t]t8

3^ĉ1~t,r!ĉ2~t8,r8!&,

~c1 ,c25f or Si j !. ~33!

The Gaussian noise termsjf andjSi j
satisfy the fluctuation-

dissipation relation
d
a

y

-

^jc1
~r,t !jc2

~r8,t8!&522Lc1c2
~r,r8!d~ t2t8!,

~c1 ,c25f or Si j !. ~34!

2. Calculation of the kinetic coefficients

The final task to obtain the equations of motion for t
order parameters is to evaluate the kinetic coefficients gi
by Eq. ~33!. As can be seen from Eq.~33!, the kinetic coef-
ficients are determined by the conformation of a single ch
in a local equilibrium state specified by$f(r),Si j (r)% and the
average in Eq.~33! can be taken by using the full Hamil
tonian of a single chain as

^ĉ1~t,r!ĉ2~t8,r8!&5

E DRĉ1~t,r!ĉ2~t8,r8!exp~2bHtot!

E DRexp~2bHtot!

5
^ĉ1~t,r!ĉ2~t8,r8!exp~2bH1!&0

^exp~2bH1!&0
.

~35!

The average over an unperturbed Hamiltonian^•••&0 is de-
fined in Eq.~15!. The conjugate fieldshf(r) and hSi j

(r) in

H1 should be taken self-consistently so that the local eq
librium state$f(r),Si j (r)% is realized. Unfortunately, rigor-
ous evaluation of the average appearing in Eq.~35! in terms
of the conjugate fieldshf and hSi j

is not possible, nor the
evaluation of the conjugate fields. Therefore we make a p
turbation expansion of the kinetic coefficients~35! in hf and
hSi j

. Similar treatment was employed by Kawakatsu@7#, who
studied the effect of the change in the chain conformation
phase separation kinetics of block copolymer melts.

First we show the results of the zeroth-order calculatio
in hf andhSi j

. That is, we replace the average in Eq.~33! by
the average over the unperturbed Hamiltonian defined in
~15!. We also make a gradient expansion and to the sec
order in the gradients we obtain the following results:

Lff~r,r8!5
Dcv0Nf̄

d
I2S dN

2e D¹82d~r2r8!, ~36!

LfSi j
~r,r8!5

Dcv0Nf̄

d2 FI1S dN

2e D G2

] i8] j8d~r2r8!, ~37!

LSi j Skl
~r,r8!5

Dcv0Nf̄

d3 H F2
2d2

eNb2
I1S dN

e D
1e2dN/eI2S dN

2e D¹82G ~d ikd j l 1d i l d jk!

12e2dN/2eFI1S dN

2e D G2

~d j l ] i8]k81d jk] i8] l8

1d i l ] j8]k81d ik] j8] l8!J d~r2r8!, ~38!

where¹8[]/]r8, ] i8[]/]r i8 , andf̄ is the average volume
fraction of the polymers. We have defined
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In~x!5
n!

~2x!nS e2x2 (
k50

n21
~2x!k

k! D , ~39!

and note thatIn(dN/e),In(dN/2e)→1 for the rigid rod limit
e/N→`. The detail of the calculation is given in Append
A.

Next we proceed to the first order calculation in the co
jugate fields. Although we can make such calculation
LfSi j

and LSi j Skl
, their resultant form is quite complicate

and the physical meaning for their modification due tohf
andhSi j

is not clear. Therefore we show the result only f

Lff and we will discuss below the physical meaning of t
modification ofLff . The detail of the calculation is given i
Appendix B and the result is given by

Lff~r,r8!5
Dcv0Nf̄

d H I2S dN

2e D¹82d~r2r8!

2I2S dN

2e D ] i8h̄f~r8!] i8d~r2r8!

2F4

3
I3S dN

e D2
4

3
I3S dN

2e D1I2S dN

2e D G
3] j8„h̄Si j

~r8!] i8d~r2r8!…J , ~40!

where

h̄f~r!5v0Nhf~r!, ~41!

h̄Si j
~r!5

v0N

d
„hSi j

~r!1hSji
~r!…. ~42!

III. SIMULATION

Since our model given in Sec. II is quite complicate
analytical treatment is difficult. Therefore we numerica
integrate the kinetic equations for the order parameters.
restrict ourselves to the rigid rod case (e/N→`) and we
introduce dimensionless lengthx̃5x/Nb and time t̃ 5t/

@d(Nb)2/Dcf̄#. The dimensionless spatial derivative is]̃ i
5Nb] i . Then the free energy given in Eq.~21! can be re-
written as

F5
1

Nv0bE drH f ln f1
N

N8
~12f!ln~12f!

1xNf~12f!2
f

2
Tr$ ln~11dQ!2dQ%

2 1
2 wNf2Tr~Q2~1/d!Tr Q!21 1

2 WNf~Tr Q!2

1
1

2f
C̃0~ ]̃ if!21L̃0S ]̃ if]̃ jQi j 1

1

2f
Qi j ]̃ if]̃ jf D

1 1
2 L̃1f~]̃kQi j !

21 1
2 L̃2f]̃ iQi j ]̃kQk jJ , ~43!

where C̃051/12d, L̃051/12, L15d/24, L̃25d/6 and the
term proportional toL̃2 has been changed for simplicity. W
-
r

,

e

also introduce the dimensionless free energyF̃5Nv0bF and
the dimensionless random noise terms j̃f

5@d(Nb)2/Dcf̄#jf and j̃Si j
5@d(Nb)2/Dcf̄#jSi j

. The
equations of motion for the order parameters can be rewri
by using Eqs.~31!, ~32!, ~40! @or Eq. ~36! when we do not
consider the fieldshf andhSi j

], ~37!, and~38! and taking the

rigid rod limit e/N→`. The resultant equations are

]

]t
f~r!5]mH ~]m1~]mh̄f!2h̄Smn

]n!
dF

df~r!J
1

2

d
]m]n

dF

dSmn~r!
1jf , ~44!

]

]t
Si j ~r!5

2

d
] i] j

dF

df~r!
1

2

d2F¹2
dF

dSi j ~r!

12S ] i]m

dF

dSj m~r!
1] j]m

dF

dSim~r! D G1jSi j
. ~45!

Hereafter all the tildes are omitted for brevity. Since we ta
only the first-order terms inhf andhSi j

, in the simulation we

retain only the first-order terms inQi j for these conjugate
fields. Therefore, using Eqs.~18! and ~19!, we take

h̄f~r!52 ln f~r!, ~46!

h̄Si j
~r!52dQi j ~r!. ~47!

Before presenting the results of our simulation, we ma
some remarks on these kinetic equations. When we deal
rigid rodlike polymers and allow them to move only transl
tionally, which is the case in the biased reptation model,
orientational order behaves as a conserved variable@21# and
in Eq. ~45!, Si j is conserved. The orientational order is n
actually conserved because of the rotational motion of
polymers, which is not incorporated in the biased reptat
model as noted in Sec. II D. In a nondilute solution that
are interested in, rotational diffusion is suppressed due to
topological constraint imposed by surrounding chains. In
semidilute solution, Dr /@Dc /(Nb)2#;O(N26)!1 @20#,
whereDr is the rotational diffusion constant, and our mod
can be considered as a limitDr /@Dc /(Nb)2#→0. To intro-
duce the rotational diffusion phenomenologically, we c
add a term like2t r

21dF/dSi j to the right hand side of Eq
~45!, wheret r

21.Dr /@Dc /(Nb)2#!1.
Next we make a comment on the kinetic coefficientLff .

The first term in the right-hand side of Eq.~44! can be re-
written as2“•Jff(r) with

„Jff~r!…i5H 2„d i j 1dQi j ~r!…] j1
] if~r!

f~r! J dF

df~r!
, ~48!

where use has been made of Eqs.~46! and ~47!. The first
term in Eq. ~48! states that polymers have a stronger te
dency to diffuse parallel to the nematic orientation. This a
isotropic diffusion can be incorporated in our model
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FIG. 1. Time evolution of the phase separation for~a! case 1,~b! case 2, and~c! case 3 withwN53. The darkness representsf. The
numbers are times after quench. Under the same initial conditions.
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evaluating the kinetic coefficientLff in terms of the conju-
gate fieldhSi j

. Without hSi j
andhf , Lff produces only the

isotropic diffusion¹2dF/df.
We numerically integrate Eqs.~44! and ~45! on a two-

dimensional 1283128 square lattice with the periodi
boundary conditions using the Euler scheme. In all our sim
lations, we choose the parametersxN52.7, andWN55. The
average volume fraction of the polymer is set equal tof̄
50.5. To avoid numerical difficultiesL0 andhSi j

are multi-

plied by 0.7. We also setN5N8 for simplicity and to avoid
numerical difficulties arising from the smallness off when
we setN@N8. The lattice size and the time step are taken
beDx50.25 andDt5Dt0fmin , respectively, wherefmin is
the minimum value off and Dt0 will be specified below.
We neglect the random noise termsjf andjSi j

in the kinetic
equations which we believe will not have a significant effe
on late stage phase separation kinetics. As the initial co
tions, f and Qi j at each lattice points are random numbe
uniformly distributed in @f̄20.01,f̄10.01# and
@20.01,0.01#, respectively. That is, the initial conditions a
homogeneous and isotropic with no orientational order.

We set the anisotropic interaction parameter towN53 or
5. We takeDt050.0002 forwN53 andDt050.000 15 for
wN55. Note that phase separation into an isotropic ph
poor in LCP’s and a nematic phase rich in LCP’s occurs
our simulations as mentioned in Sec. II C and that the m
nitude of the orientational order in a nematic phase beco
larger with increasingwN. We also note that the spinoda
point for the orientational order isNwf̄52 for d52 ~see
Sec. IV!. Therefore when we takewN55, phase separatio
and growth of orientational order occur simultaneously at
50 and whenwN53 the orientational order grows after th
compositional phase separation.

Characteristic of our kinetic equations, together with t
modification ofLff , is the presence of the off-diagonal k
netic coefficientLfS , which has been neglected in phenom
enological studies@18,19# of phase separation with orienta
-

o

t
i-

s

e
n
g-
es

e

-

tional order. To check how phase separation kinetics
influenced by the presence ofLfS and the modification of
Lff , we consider the following three cases:~i! without LfS
and withhf5hSi j

50 in Lff ~referred to as case 1 below!,

~ii ! with LfS and withhf5hSi j
50 in Lff ~case 2! and~iii !

with LfS and with hf and hSi j
in Lff given by Eqs.~46!

and~47! ~case 3!. In Fig. 1 we show the time evolution of th
phase separation withwN53 for each case. In all the case
we can observe the formation and coarsening of a percol
network structure rich in polymers~black regions! and
polymer-poor~white! regions form isolated structures. Suc
a network structure has been observed in experiment
phase separation in systems containing LCP’s@13,16,17#.
We also note that such an asymmetric morphology has b
obtained in numerical analyses of viscoelastic phase sep
tion @9,10# and of phase separation in elastic materials@35#.
We show in Fig. 2 the orientational order att561.282 in
case 3. Orientational order of polymers parallel to the int
face or the network structure can be observed. We note
orientational order parallel to the interface is preferable
cause of the coupling terms proportional toL0 in the free
energy~43! @25#. Although we do not show the figures, th
same behavior for the orientational order can be obser
also in cases 1 and 2.

To make a quantitative comparison of the growth of t
order for the three cases, we show in Fig. 3 the time evo
tion of the quantitieŝ df2& and ^Q̃i j

2 &, wheredf5f2f̄

andQ̃i j is the traceless part ofQi j . We also check the time
evolution of the characteristic lengths. As a characteris
length, we take a length determined by the interface len
defined by

l int~ t !5
A

~ interface length att !
, ~49!

whereA is the area of the system. We also define anot
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characteristic lengthl k(t)52p/ k̄(t), wherek̄(t) is the aver-
age wavenumber defined as@36#

k̄~ t !5

E dk kS~k,t !

E dk S~k,t !

. ~50!

Here S(k,t) is the circular average of the structure fact
S(k,t)5^uf(k,t)u2&, f(k,t) being the Fourier transform o
f(r,t). The time evolution of the characteristic lengt
l int(t) and l k(t) is shown in Fig. 4. We find from Fig. 3 tha
the compositional order grows faster withoutLfS ~case 1!
than withLfS ~cases 2 and 3!, which can be seen also in Fig
1. We also find from Figs. 3 and 4 that the characteris

FIG. 2. Orientational order att561.282 in case 3 withwN
53. The length and the orientation of the lines representS andni ,
respectively, wheref(Qi j 2Qkkd i j /2)5S(ninj2d i j /2). The length
of the thick solid line corresponds toS50.5598, the maximum
value ofS in the figure.

FIG. 3. Time evolution of̂ df2& and ^Q̃i j
2 & for wN53.
c

lengths start to grow earlier withoutLfS than withLfS and
that they start to grow when̂df2&.0.22. We will return to
this problem in Sec. IV. Att*15, the characteristic length
obey l;ta with a.1/3, which is a typical growth law for
systems with conserved order parameters@1#. We can also
observe a slightly faster growth in case 3 than in case 2
2&t&10.

Experiments on phase separation in mixtures of LC
and flexible polymers show that an evaporation-condensa
process of flexible-polymer-rich~LCP-poor! domains and a
breakup process of a network structure rich in LCP’s can
observed as a coarsening mechanism@16#. The coarsening
processes in cases 2 and 3 are illustrated in Fig. 5. In
simulation both processes occur in case 3 and in cases 1
2 ~although we have not shown case 1 in Fig. 5! only
evaporation-condensation processes can be observed an
breakage of network structures rich in LCP’s is quite ra
Therefore the breakage of a network is attributed to the t
dency of LCP’s to diffuse parallel to the nematic orientatio
although in actual systems hydrodynamic flow induced
capillary pressure may play an important role~note that our
model does not incorporate hydrodynamic effect!.

FIG. 4. Time evolution of the characteristic lengthsl int(t) and
l k(t) for wN53.

FIG. 5. Illustration of the coarsening process in cases 2 an
with wN53. White arrows indicate the evaporation-condensat
mechanism and black arrows indicate the breakage of a netw
structure.
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FIG. 6. Time evolution of the phase separation for~a! case 1,~b! case 2, and~c! case 3 withwN55.
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Next we show in Fig. 6 the time evolution of the comp
sitional order withwN55. While we also observe a networ
structure rich in LCP’s in cases 1 and 2, droplet morpholo
can be observed in case 3. In case 3 breakup of the tran
network structure occurs beforet.3 and is shown in Fig. 7
We note that in experiments on phase separation in mixt
of LCP’s and flexible polymers, formation of droplets aft
the breakup of the network structure is observed@16,17#. The
process shown in Fig. 7 closely resembles that observe
experiments. We show in Fig. 8 the growth of the order as
Fig. 3. We find a faster growth of the compositional ord
without LfS than withLfS as in the cases withwN53. We
also find a faster growth of the orientational order than in
cases withwN53 and the magnitude of the orientation
order is larger than inwN53. As mentioned above, the ten
dency of LCP’s to diffuse parallel to the nematic orientati

FIG. 7. Breakup of the transient network structure in case 3 w
wN55.
y
ent

es

in
n
r

e

incorporated in case 3 tends to break up the network st
ture. In case 3 withwN55, orientational order appears ea
lier than in wN53 and its magnitude is so large that th
transient structure observed in the early stage breaks up
droplets. We show in Fig. 9 the time evolution of the cha
acteristic lengthsl int(t) and l k(t). Although we can observe
a typical growth for conserved systemsl;t1/3 for case 2, the
growth in case 1 is slower thanl;t1/3 at t*10. We also find
that the growth in case 3 is much faster than in case 2.
can conclude from Figs. 4 and 9 that in our model the t
dency of LCP’s to diffuse parallel to the nematic orientati
incorporated in case 3 fastens the coarsening kinetics in
stages.

IV. LINEAR ANALYSIS OF THE GROWING MODE

The presence of the off-diagonal kinetic coefficientLfS
together with the coupling off and Si j in the free energy
leads to the growth of the compositional order and the o
entational order in a coupled fashion. To check howf and
Si j evolve in the early stage, we perform a linear analysis
the growing modes from a homogeneous and isotropic s

h
FIG. 8. Time evolution of̂ df2& and ^Q̃i j

2 & for wN55.
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df(r)5f(r)2f̄50 and Qi j (r)50. The linearized equa
tions are

]

]t
dfq52q2

dF

df
2p

2qkql

d

dF

dSkl
, ~51!

f̄
]

]t
dQi j q52p

2qiqj

d

dF

df
2

2q2

d2

dF

dSi j

2
4

d2S qiqk

dF

dSjk
1qjqk

dF

dSik
D , ~52!

whereqi is the wave number andp51 with LfS ~cases 2
and 3! and p50 without LfS ~case 1!. The dfq anddQi j q
are the Fourier transform ofdf(r) and dQi j (r), respec-
tively. The linearized functional derivatives are

dF

df
5S A1

C0

f̄
q2D dfq1L0qkqldQklq , ~53!

dF

dSi j
5S d2

2
2wNf̄1L1q2D dQi j q1S wNf̄

d
1WND d i j dQkkq

1 1
2 L2~qjqkdQikq1qiqkdQjkq!1

L0

f̄
qiqjdfq , ~54!

with A51/f̄11/(12f̄)22xN.
Since the initial state is isotropic, there is no preferr

direction and we take the wave numberq parallel to thez
axis. Then we find four independent modesdQxx2dQyy ,
dQxy , dQxz and dQyz , the linearized equations for whic
can be written as

f̄
]

]t
dQi j q52

2q2

d2 S d2

2
2wNf̄1L1q2D dQi j q ,

~dQi j 5dQxx2dQyy or dQxy!, ~55!

FIG. 9. Time evolution of the characteristic lengthsl int(t) and
l k(t) for wN55.
d

f̄
]

]t
dQi j q52

6q2

d2 Fd2

2
2wNf̄1S L11

1

2
L2Dq2GdQi j q ,

~dQi j 5dQxz or dQyz!. ~56!

These four modes can grow whenwNf̄.d2/2. The maxi-
mum growing rate is given by

l* 5

S wNf̄2
d2

2 D 2

2d2L1f̄
~ for dQxx2dQyy anddQxy!, ~57!

l* 5

3S wNf̄2
d2

2 D 2

d2~2L11L2!f̄
~ for dQxz anddQyz!, ~58!

and the corresponding wave number is

q* 5
AwNf̄2

d2

2

2L1
~ for dQxx2dQyy and dQxy!, ~59!

q* 5
AwNf̄2

d2

2

2L11L2
~ for dQxz and dQyz!. ~60!

We also find thatdf, dQzz anddQkk evolve in a coupled
manner and their time evolution can be described by

]

]t
dfq52q2H S A1

C0

f̄
q2D dfq1L0q2dQzzqJ 2p

2q2

d

3H L0

f̄
q2dfq1S d2

2
2wNf̄1~L11L2!q2D dQzzq

1S wNf̄

d
1WND dQkkqJ , ~61!

f̄
]

]t
dQzzq52p

2q2

d H S A1
C0

f̄
q2D dfq1L0q2dQzzqJ

2
10q2

d2 H L0

f̄
q2dfq1S d2

2
2wNf̄

1~L11L2!q2D dQzzq

1S wNf̄

d
1WND dQkkqJ ,

~62!



a

s
tiv
g
,

ta

nt

e
be-

ble

er
ith
e-

er
p-
the

al

.
-

e

nal

PRE 59 3285PHASE SEPARATION KINETICS OF LIQUID . . .
f̄
]

]t
dQkkq52p

2q2

d H S A1
C0

f̄
q2D dfq1L0q2dQzzqJ

2
8q2

d2 H 5L0

4f̄
q2dfq1Fd2

2
2wNf̄

1S L11
5

4
L2Dq2GdQzzq1Fd2

8
1

wNf̄

d

1S 11
d

4DWN1
1

4
L1q2GdQkkqJ . ~63!

Similar results have been obtained in Refs.@21# and@22#. We
show in Fig. 10 the growth ratel of this coupled mode as
function of the magnitude of the wave numberq for wN
53 and 5 withp51 ~with LfS) and the other parameter
used in our simulations. The most stable mode with nega
l for all q.0 is associated with the fluctuation of the se
ment length or trace ofQi j , and the intermediate mode
stable forwN53 and unstable forwN55, is related to the
orientational order. Note that the spinodal point for orien
tional order iswN5d2/2f̄54 because in our simulationd
52 and we setf̄50.5. The most unstable mode represe
the growth of the compositional orderdf. Note that the

FIG. 10. Growth ratel of the coupled mode ofdf,dQzz and
dQkk for ~a! wN53 and~b! wN55 is shown by three solid lines
We also show the growth rate ofdQxz by dashed lines for refer
ence.
e
-

-

s

growth rate of all the modes atq50 is zero because th
orientational order as well as the compositional order
haves as a conserved variable in our model~see Sec. III!.

We show in Fig. 11 the growth rate of the most unsta
mode associated with the compositional orderdf for the
cases withLfS(p51) and withoutLfS (p50). The maxi-
mum growing ratel* and the corresponding wave numb
q* are shown in Table I. The wave number of the mode w
the maximum growing rate is not significantly different b
tween the cases without and withLfS , while the maximum
growth rate is smaller withLfS than withoutLfS , which is
responsible for the slow growth of the compositional ord
with LfS observed in our simulation. We note that the su
pression of the compositional order in the early stage of

TABLE I. Maximum growing ratel* and the corresponding
wave numberq* of the mode associated with the composition
order.

l* q*

wN without LfS with LfS without LfS with LfS

3 7.00 3.89 3.20 3.16
5 7.39 4.02 3.24 3.24

FIG. 11. Growth ratel of the coupled mode ofdf,dQzz and
dQkk for ~a! wN53 and~b! wN55. The solid line represents th
case withLfS(p51) and the dashed line withoutLfS(p50).
Only the most unstable mode associated with the compositio
order is shown.
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phase separation due to the off-diagonal coupling with
other degree of freedom has been observed in a nume
analysis of the viscoelastic phase separation@9,10#.

V. CONCLUSION

In this paper we have investigated phase separation k
ics of main-chain LCP’s by numerically solving the coupl
time-dependent Ginzburg-Landau equations for the com
sitional order parameterf and the orientational order param
eterSi j . The kinetic coefficients are calculated by using t
biased reptation model and one of the coefficientsLff is
evaluated by a perturbation expansion in self-consis
fields hf andhSi j

conjugate to the order parameters. By th
treatment we can incorporate the tendency of LCP’s to
fuse parallel to the nematic orientation. We have shown
the phase separation leads to a network structure rich in p
mers and that the orientation of the polymers is paralle
the interface between polymer-rich regions and polym
poor regions. The presence of the off-diagonal kinetic co
ficient LfS suppresses the growth of the compositional or
in the early stage, which has been shown by a linear ana
of the growing modes. We have also shown that the tende
of the polymers to diffuse parallel to the nematic orientat
causes the breakage of the network structure. In conclus
the coupling between compositional order and orientatio
order in the kinetics as well as in the free energy play
significant role in phase separation and domain morphol
in LCP’s.
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APPENDIX A: ZEROTH-ORDER CALCULATION
OF THE KINETIC COEFFICIENTS

In this Appendix we calculate the kinetic coefficients
to zeroth order in the conjugate fieldshf andhSi j

. First we
rewrite Eq.~33! as

Lc1c2
~r,r8!52Dcn$^ĉ1~L,r!ĉ2~L,r8!&

1^ĉ1~0,r!ĉ2~0,r8!&2^ĉ1~0,r!ĉ2~L,r8!&

2^ĉ1~L,r!ĉ2~0,r8!&%,

~c1 ,c25f or Si j !. ~A1!

Here we replace the average in Eq.~A1! by the average
defined in Eq.~15!. By using Eqs.~2! and ~A1!, the coeffi-
cient Lff can be rewritten as
-
al

t-

o-

nt

f-
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Lff~r,r8!52
Dcnv0

2

b2V
~2d~r2r8!

2^d„r 2r82@R~0!2R~L !#…&0

2^d„r 2r82@R~L !2R~0!#…&0!, ~A2!

where V is the volume of the system. Using the Fouri
transform we can derive

^d„r 2r82@R~0!2R~L !#…&0

5
1

~2p!dE dqe2 iq•~r2r8!^exp$2 iq•@R~L !2R~0!#%&0

5
1

~2p!dE dqe2 iq•~r2r8!

3$exp~2 1
2 qiqj^@Ri~L !2Ri~0!#@Rj~L !2Rj~0!#&0%,

~A3!

where we have utilized the fact thatR is a variable with a
Gaussian distribution. To evaluate the average appearin
Eq. ~A3!, we make a normal mode analysis@25,31#. The
Fourier transform ofR(t) is

Rj5
1

A2p
E

2`

`

dt R~t!e2 i jt, ~A4!

where summation overj is replaced by an integral, suppo
ing an infinite chain. This treatment greatly simplifies t
calculation because we can neglect the inhomogeneity a
chain ends. From the wormlike-chain Hamiltonian~7! and
Eq. ~8!, we obtain

^Ri jRj j8&05
1

S d2

4eb
1ebj2D j2

d i j d~j1j8!. ~A5!

Using Eq.~A5!, we can calculate the average appearing
Eq. ~A3! and the result is

^@Ri~L !2Ri~0!#@Rj~L !2Rj~0!#&05d i j

L2

d
I2S dN

2e D , ~A6!

whereI2 has been defined in Eq.~39!. From Eqs.~A2!, ~A3!,
and ~A6! we obtain Lff and expanding Eq~A3! in q
~equivalent to the gradient expansion! and taking the terms
up to second order inq, we finally obtain Eq.~36! ~notice
that the average volume fraction of polymers isf̄
5v0Nn/V).

We can also calculateLfSi j
andLSi j Skl

in a similar way
by noticing that

K ui~t!uj~t!2
1

d
d i j L

0

50, ~A7!
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K S ui~L !uj~L !2
1

d
d i j D @Rk~L !2Rk~0!#@Rl~L !2Rl~0!#L

0

5FL

d
I1S dN

2e D G2

~d ikd j l 1d i l d jk!, ~A8!

K S ui~0!uj~0!2
1

d
d i j D S uk~0!ul~0!2

1

d
d i j D L

0

5
1

d2
~d ikd j l 1d i l d jk!, ~A9!

K S ui~0!uj~0!2
1

d
d i j D S uk~L !ul~L !2

1

d
d i j D L

0

5
1

d2
e2dN/e~d ikd j l 1d i l d jk!, ~A10!

K S ui~L !uj~L !2
1

d
d i j D S uk~L !ul~L !2

1

d
dklD

3@Rm~L !2Rm~0!#@Rn~L !2Rn~0!#L
0

5
L2

d3H e2dN/eI2S dN

2e D dmn~d ikd j l 1d i l d jk!

1e2dN/2eFI1S dN

2e D G2

„d im~dknd j l 1d lnd jk!

1d j m~dknd i l 1d lnd ik!1dkm~d j nd i l 1d ind j l !

1d lm~d j nd ik1d ind jk!…J . ~A11!

Equations~A7!, ~A8!, ~A9!, ~A10!, and ~A11! can be ob-
tained by using Eqs.~A4! and ~A5!.

APPENDIX B: CALCULATION
OF THE KINETIC COEFFICIENT Lff FIRST ORDER

IN THE CONJUGATE FIELDS

Here we show the calculation of the kinetic coefficie
Lff as a perturbation expansion up to first order in the c
jugate fieldshf and hSi j

. In this calculation,Lff is also
given by Eq.~A2!, where the average should be replaced

^d„r2r82@R~0!2R~L !#…&

.^d„r 2r82@R~0!2R~L !#…&0~11^bH1&0!

2^d„r 2r82@R~0!2R~L !#…bH1&0 , ~B1!

which can be obtained by making a perturbation expans
of Eq. ~35! in terms of the interaction HamiltonianH1 . By
using Eqs.~2!, ~4!, and~9!, the last term in Eq.~B1! can be
written as
t
-

s

n

^d„r 2r82@R~0!2R~L !#…bH1&0

5
1

~2p!2dE dqE dq8e2 iq•~r2r8!e2 iq8•r8
v0

b E
0

L

dt

3 K eiq•„R~0!2R~L !…e2 iq8•„R~t!2R~L !…

3H hf~q8!1S ui~t!uj~t!2
1

d
d i j DhSi j

~q8!J L
0

, ~B2!

where we have introduced the Fourier transform

hc~q!5E dr eiq•rhc~r!, ~c5f or Si j !. ~B3!

We make an expansion in terms of the wave numbersq and
q8 as in Appendix A and we also here retain the second-or
terms in the wave numbers. Then the average in Eq.~B2! is

^•••&0.~zeroth-order terms inq!1qkql8H ^@Rk~0!2Rk~L !#

3@Rl~t!2Rl~L !#&0hf~q8!1 K @Rk~0!2Rk~L !#

3@Rl~t!2Rl~L !#S ui~t!uj~t!2
1

d
d i j D L

0

hSi j
~q8!J

2 1
2 qkql H ^@Rk~0!2Rk~L !#@Rl~0!

2Rl~L !#&0hf~q8!1K „Rk~0!2Rk~L !…S Rl~0!

2Rl~L !…S ui~t!uj~t!2
1

d
d i j D L

0

hSi j
~q8!J . ~B4!

Zeroth order terms inq yield d(r2r8)^bH1&0 and eventually
cancel out by the first term in the right-hand side of Eq.~B1!.
Evaluating the averages in Eq.~B4!, we obtain

^d„r 2r82@R~0!2R~L !#…bH1&0

5
1

~2p!2dE dqE dq8e2 iq•~r2r8!e2 iq8•r8
v0

b

3S qkql8H L3

2d
I2S dN

2e D dklhf~q8!1
L3

d2F2

3
I3S dN

e D
2

2

3
I3S dN

2e D1
1

2
I2S dN

2e D G~d ikd j l 1d i l d jk!hSi j
~q8!J

2
1

2
qkql H dkl

L3

d
I2S dN

2e Dhf~q8!1
L3

d2F4

3
I3S dN

e D
2

4

3
I3S dN

2e D1I2S dN

2e D G~d ikd j l 1d i l d jk!hSi j
~ql 8!J D .

~B5!
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The first term in Eq.~B1! is evaluated to be

^d„r 2r82@R~0!2R~L !#…&0~11^bH1&0!

.H 11
L2

2d
I2S dN

2e D¹82J d~r2r8!

1^bH1&0d~r2r8!

1
L2

2d
I2S dN

2e D ^bH1&0¹82d~r2r8!, ~B6!
hn

E

ev

ac
where we have used the results in Appendix A and retai
up to the second-order terms in the gradients. The sec
term in Eq.~B6! cancels out as noted before. Then we ha
to retain only the zeroth order terms in the gradients~or q in
the Fourier space! for ^bH1&0 and we get

^bH1&05v0Nhf~r8!. ~B7!

Finally, we obtain Eq.~40! by using Eqs.~A2!, ~B1!, ~B5!,
~B6!, and~B7!.
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